

16thAngioplasty Summit TCT AP 2011 KCTA Symposium April 29th, 2011

Role of Periprocedural IVUS in Stent Optimization

Soo Hwan Park RT.

The Heart Center of Chonnam National University Hospital, Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea

IVUS Work after Stenting

Stent optimization?

Post-stenting complications?

Post-intervention Applications: Post-stent Implantation

- Verify stent expansion
- Verify stent apposition
- Measure cross-sectional area (CSA): strong predictor of long-term restenosis
- Dissections
- Intramural/extramural hematomas
- Thrombus formation

Optimal Stent Deployment Criteria*

- Apposition good apposition of stent struts to the vessel wall such that the stent struts are not surrounded by lumen
- Expansion bare metal stent is fully expanded if
 - At least 7.5 mm² (since a stent CSA is > 7.5 mm² has a low restenosis rate); however, not possible in small vessels
 Stent CSA > 90% of ref lumen CSA
- No edge dissections only treat major dissections and intramural hematomas, not minor edge dissections

* Although not all experts agree of optimal stent criteria, above is a reasonable approach using data from multiple studies

Stent Expansion

Stent Underexpansion and malapposition

P:0.5

8.2 mm, 1 mm/div

Final Stent CSA (Stent Underexpansion)?

Target lesion revascularization

Stent thrombosis

Final Stent CSA (Stent Underexpansion)?

Target lesion revascularization

Cypher Restenosis

"Optimal" MSA (from SIRIUS)

Sonoda et al. JACC 2004;43:1959-63

Final Stent Area (Stent Underexpansion)?

Stent thrombosis

Predictors of Acute/Subacute/Late DES Thrombosis @ WHC(ses)

Okabe et al. Am J Cardiol 2007;100:615-620

3.0*19mm stent at 8 atm

Minimum Stent Area Site

Impact of Higher Pressure Adjunct PTCA on Stent Dimensions

Use higher pressures for underexpanded stents (stent CSA significantly smaller than the reference lumen) unless the stent or balloon was initially undersized

DS = 27% MLD = 1.93mm Post Stent

CSA = 2.1mm² MLD = 1.5mm

3.0mm 20atm

DS = 8% MLD = 2.43mm Post PTCA#2

CSA = 4.9mm² MLD = 2.4mm

Post PTCA#1

CSA = 4.7mm² MLD = 2.3mm

Impact of Progressively Higher Pressure Adjunct PTCA on Stent Dimensions

Stent Apposition

Stent malapposition

Post-stenting Complications

- Dissection
- Intramural/Extramural hematomas
- Stent thrombosis/No-reflow
- Stent dislodgement
- Perforation

Dissection

Minor Stent Edge Dissection

non-flow-limiting or no lumen compromise arc of dissection <90 degrees

freely mobile plaque protruding into the lumen, but not directed toward the center of the lumen

Fate of Minor Edge Dissection

Distal edge dissection

6-month follow-up IVUS

Major Stent Edge Dissection

a mobile flap arc of dissection > 90 degrees flow-limiting or lumen compromise

Dissection

Dissection after PTCA

Dissection after Stenting

8.2 mm, 1 mm/div

P:**0**.5

58Y/F Unstable angina, PostCABG (1998), HT, DM, HL, CHF Normal CK-MB, TnI

3.5*33mm Cypher stent for mRCA at 14 atm

Distal stent edge dissection,

Thrombus, reference segment plaque burden

Intramural and Extramural Hematomas

Extramural Hematoma

9.6 mm, 1 mm/div

Thrombus and No-reflow

74/M UAP, HT, DM, ESRD (HD), s/p PPM (VDD)

3.5*38mm stent for mLAD at 8atm 3.5*18mm stent for pLAD at 14atm

IVUS-Guided Intervention

Pre-interventional lesion assessment Severity of coronary stenosis Lesion characteristics Anatomical relationship with other vessel

> **Choice of devices** Determine device size and length Making strategy of intervention

Post-interventional assessment Accuracy of intervention Procedure-related complications

Conclusions

To achieve stent optimization and to detect post-stenting complications

Use IVUS

Thank You For Your Attention!